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The nonlinear long waves generated by a disturbance moving at subcritical, critical
and supercritical speed in unbounded shallow water are investigated. The problem is
formulated by a new modified generalized Boussinesq equation and solved numerically
by an implicit finite-difference algorithm. Three-dimensional upstream solitary waves
with significant amplitude are generated with a periodicity by a pressure distribution
or slender strut advancing on the free surface. The crestlines of these solitons are
almost perfect parabolas with decreasing curvature with respect to time. Behind the
disturbance, a complicated, divergent Kelvin-like wave pattern is formed. It is found
that, unlike the wave breaking phenomena in a narrow channel at Fh > 1.2, the three-
dimensional upstream solitons form several parabolic water humps and are blocked
ahead of the disturbance at supercritical speed in an unbounded domain for large
time.

1. Introduction
In waterways around the world, high-speed vessels are used widely as a fast

means of transportation. A large-amplitude wake wash generated by those fast ships
and propagating shoreward has become an issue of central concern for coastal
communities. The large waves have a significant impact on the safety of people,
property and craft, and are responsible for the erosion of coastlines and sea bottoms
and the biological environment. In a fatal accident which occurred in Harwich, a
port on England’s east coast, in July 1999, one surviving victim reported that the
wave looked like ‘the white cliffs of Dover’ (see Hamer 1999). Research carried out
in Europe shows that the soliton produced by a fast ferry was probably responsible
for the disaster.

In restricted waters, solitary waves can be generated ahead of the ship bow,
propagating upstream keeping their shape and velocity constant. Scott Russel first
discovered this phenomenon in 1834 as he watched a canal boat pulled by horses stop-
ping suddenly. In ship hydrodynamics, it has been observed (see Thews & Landweber
1935, 1936) in a towing tank that a ship model advancing steadily can radiate waves
upstream that move faster than the ship and a steady state of the wave resistance can-
not be reached. The extensive experimental, theoretical and numerical investigations
of this type of wave were pioneered by the systematic experiments of Huang et al.
(1982) for ship models moving at various transcritical speeds. Investigating extensive
experimental results for a Series 60 ship model, Ertekin, Webster & Wehausen (1984)
pointed out that the blockage coefficient A/Wh (A is the maximum cross-sectional
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area of the ship, W is the width and h the depth of the channel) is the dominant
parameter for the generation of solitons.

Wu & Wu (1982) presented numerical computations for the nonlinear long waves
forced by a moving pressure patch in the vicinity of the critical speed U =

√
gH

in a two-dimensional tank, based on a generalized Boussinesq (gB) model (see Wu
1981) assuming a balance between nonlinear and dispersive effects. It was shown
that a solitary wave first emerges ahead of the disturbance, and finally propagates
upstream. Starting from the linear solution, Akylas (1984) and Cole (1985) developed
the nonlinear theory which accounts for the finite-amplitude effects and found that
the generated waves are governed by a forced Korteweg–de Vries (fKdV) equation.
Ertekin et al. (1984) carried out a numerical calculation by using the Green–Naghdi
fluid sheet equations. The forcing is taken as a pressure distribution on the free surface
or the underwater topography and a similar phenomenon is reported: a succession
of upstream-running solitons are generated periodically ahead of the disturbance,
while a weakly nonlinear and dispersive wave train develops downstream of an
elongated depressed water surface, trailing the disturbance. Wu (1987) presented
a preliminary study of the underlying basic mechanism of the phenomenon by
analysing the stability of the solutions of the fKdV equation. In a joint numerical
and experimental study, Lee, Yates & Wu (1989) found that both the gB and
fKdV models obtain qualitatively similar predictions of the phenomenon of the
precursor solitons, showing a satisfactory agreement with experiments. Casciola &
Landrini (1996) used an accurate boundary integral approach to simulate the flow
and carried out a detailed comparison between the fully nonlinear model, and gB and
fKdV models. Zhang & Chwang (1999) investigated the influence of viscous effects
on a two-dimensional submerged body moving at transcritical speed by solving
the Navier–Stokes equations with the complete set of no-slip boundary conditions
numerically.

In a restricted channel of shallow water, the two-dimensional upstream solitons
are generated by a disturbance with a three-dimensional geometry at a transcritical
speed. Mei (1986) derived a one-dimensional inhomogeneous KdV equation for the
flow around thin bodies extending throughout the water depth. The corresponding
result is two dimensional for both upstream and downstream waves if the channel
width is small: W � h2/a, a being the typical wave amplitude. Ertekin, Webster &
Wehausen (1986) used the restricted Green–Naghdi theory of fluid sheets to per-
form the three-dimensional calculation of waves generated by an impulsively started
pressure patch travelling at the transcritical speed. The two-dimensional solitons
propagate upstream periodically, whereas a three-dimensional doubly corrugated set
of waves is formed behind the disturbance. By analysing the linear dispersive re-
lation near the critical speed, Katsis & Akylas (1987) derived a forced nonlinear
Kadomtsev–Petviashvili (KP) equation to describe the linear dispersive, nonlinear
and transverse effects governing the nonlinear long waves excited by a moving pres-
sure distribution. The sidewall is not essential for the radiation of upstream waves
but is for the transformation of curved waves to straight-crested solitons. Pedersen
(1988) studied the wave patterns generated by a pressure field, source distribution
and bottom topography in wide channels based on the Boussinesq equations. The
formation of two-dimensional solitons is related to the Mach reflection at the sidewall
of the channel. Other researchers solved the Laplace equation with the exact free
surface condition numerically. Bai, Kim & Kim (1989) and Choi et al. (1990) studied
the nonlinear free surface flow produced by a three dimensional ship hull by means
of the finite element method.
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From the viewpoint of applications, the real ship geometry has to be considered for
the demands of high-speed vessel design. Using the matched asymptotic expansion
method, Choi & Mei (1989) obtained the homogeneous KP equation with flux
conditions on the symmetric plane under the assumption of a slender body. The
normal condition of wave elevation is related to the second x-derivative of the
longitudinal sectional area. Chen & Sharma (1995) extended that method and took
the local wave elevation and longitudinal disturbance velocity into account. The wave
force, hydrodynamic lift force and trim moment are calculated for the fixed-hull case
and sinkage and trim are calculated for the free-hull case.

It is natural to ask if there exists a steady state or what the unsteady state looks
like for a disturbance moving at the critical speed of a long wave in horizontally
unbounded domain, in which the blockage parameter tends to zero. Katsis & Akylas
(1987) first dealt with this problem using the forced KP equation and a nonlin-
ear curved wave emerges in front of the disturbance at the critical condition. They
suggested that no nonlinear steady state could be reached in that case. Pedersen
(1988) applied a radiation condition at the open seaward boundary and simulated
the problem for a sufficiently long time. He suggested that there always exists a
stationary state in unbounded sea and the wave pattern is extended some distance
ahead of the disturbance when the depth Froude number is close to unity. This might
not be true, however, as the following studies presented opposite predictions. Lee &
Grimshaw (1990) also employed the KP equation and reported various characteris-
tics of upstream-advancing waves in open sea. A similarity solution was presented
under the assumption that the amplitude is constant along the isophasal line of
the leading three dimensional soliton. The solitary wave amplitude diminishes in a
manner proportional to O(t−2/3) and the crestline, which is a parabola, decreases its
curvature as it moves. Choi et al. (1990) reported the numerical results for a pressure
distribution travelling at the critical speed in an open domain and found that the
crestline of the leading soliton fits well with a parabola when the upstream wave
develops.

The principal focus of the present study is on the three-dimensional upstream
solitary waves generated by a moving disturbance at subcritical, critical and super-
critical speeds in unbounded shallow water. In § 2, a modified generalized Boussinesq
(mgB) equation is derived in terms of the depth-averaged velocity potential and water
elevation. No specific limitation is imposed on the scale of the transverse variation
and time, hence allowing the modelling of unsteady shallow water waves forced by
either a pressure patch on the free surface or a source distribution underwater. The
numerical method based on an implicit finite-difference algorithm is described in
§ 3. An open boundary condition is enforced on both the downstream and open
seaward boundaries to allow the wave to propagate outward without reflection.
The numerical results and discussion of the solitary waves generated by a pres-
sure distribution and a slender strut are presented in § 4. Conclusions are presented
in § 5.

It is found that the crestlines of the upstream long waves generated by the dis-
turbance are nearly perfect parabolas with curvature diminishing as the waves move
forward. The phase velocity of the leading soliton is proportional to its amplitude,
which decays at a rate of O(t−1/3). These properties are independent of the type of
disturbance, magnitude and shape of forcing. At supercritical speeds, the upstream
solitons are blocked in front of the disturbance without further variation of their
amplitude and curvature and move at the same velocity as the disturbance. A steady
state will be eventually reached for the supercritical case.
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2. Formulation
2.1. Modified generalized Boussinesq equation

Let a pressure distribution advance at the constant speed U acting on the surface of
a layer of water with uniform depth h. The disturbance is stationary in a reference
coordinate system moving with the pressure. Oz points upward and the (x, y)-plane
lies on the undisturbed free surface. In this reference frame, a steady current is moving
in the positive x-direction with a speed U. Under the assumption of incompressible,
inviscid and irrotational flow, the water wave motion is described by the velocity
potential Φ(x, y, z, t) and the free-surface water elevation ζ(x, y, t).

In this reference frame, the velocity potential Φ(x, y, z, t) can be decomposed as

Φ(x, y, z, t) = φ(x, y, z, t) +Ux, (2.1)

in which φ(x, y, z, t) is the disturbance velocity potential representing the flow motion
induced by the external disturbances such as the pressure distribution on the free
surface, floating bodies or underwater topography.

The velocity potential φ(x, y, z, t) satisfies the Laplace equation

φxx + φyy + φzz = 0. (2.2)

The dynamic and kinetic free-surface conditions are

φt +Uφx + gζ + 1
2
∇φ · ∇φ+

p

ρ
= 0 at z = ζ, (2.3)

ζt +Uζx + φxζx + φyζy = φz at z = ζ. (2.4)

On the bottom the non-flux boundary condition is

φz = 0 at z = −h, (2.5)

where g is the gravitational acceleration, ρ is the fluid density and p is the forcing
pressure on the free surface.

We choose the typical wave amplitude as a, the characteristic wavenumber as k, the
characteristic horizontal velocity as

√
gh and vertical scale as h. The above variables

are thus normalized as follows:

(x, y) =
(x′, y′)
k

, ζ = aζ ′, z = hz′,

φ =
φ′a
k

√
g

h
, t =

t′

k
√
gh
, p = ρgap′.

Three dominant parameters are

ε =
a

h
, µ = kh, Fh =

U√
gh
,

in which Fh is the so-called depth Froude number. The Boussinesq approximation is
adopted which assumes that ε is of the same order as µ2, which indicates the balance
between the nonlinear and dispersive effects for nonlinear long waves.

In terms of these dimensionless variables, (2.2), (2.3), (2.3) and (2.5) become

µ2(φ′x′x′ + φ′y′y′) + φ′z′z′ = 0 (2.6)

φ′t′ + Fhφ
′
x′ + ζ ′ + ε

2

(
φ′2x′ + φ′2y′ +

φ′2z′
µ2

)
+ p′ = 0 at z′ = εζ ′, (2.7)
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ζ ′t′ + Fhζ
′
x′ + ε(φ′x′ζ ′x′ + φ′y′ζ ′y′) =

φ′z′
µ2

at z′ = εζ ′, (2.8)

φ′z′ = 0 at z′ = −1. (2.9)

Hereafter, we drop primes from (2.6) to (2.9) for brevity.
The velocity potential φ(x, y, z, t) is assumed analytic and we can expand it in power

series with respect to the vertical coordinate about z = −1:

φ(x, y, z, t) =

∞∑
n=0

(z + 1)nφn(x, y, t). (2.10)

Substituting (2.10) into the governing equation (2.6), we obtain

µ2(φxx + φyy) + φzz =

∞∑
n=0

(z + 1)n((n+ 1)(n+ 2)φn+2 + µ2∇2φn) = 0, (2.11)

where the operator ∇ denotes the gradient in the horizontal plane, i.e. ∇ = ((∂/∂x)i+
(∂/∂y)j). The value of z is arbitrary in the range [−1, εζ] and the coefficients of the
power of z + 1 must vanish to satisfy (2.11); thus we obtain

(n+ 1)(n+ 2)φn+2 + µ2∇2φn = 0, n = 0, 1, 2, . . . . (2.12)

Substituting (2.10) into the sea bottom boundary condition (2.9), we get

φz = φ1 = 0 at z = −1. (2.13)

From the recursive relation (2.12), the velocity potential components with odd
subscripts all vanish,

φ1 = φ3 = · · · = φ2m+1 = · · · = 0, m = 0, 1, . . . . (2.14)

In accordance with (2.12), the velocity components of even order can be expressed
by the zero-order term φ0 as follows:

φ2m = − µ2

2m(2m− 1)
∇2φ2m−2

= (−1)n
µ2m

(2m)!
∇2∇2 · · · ∇2︸ ︷︷ ︸

m

φ0, m = 1, 2, . . . . (2.15)

Consequently the velocity potential can be expressed as

φ(x, y, z, t) = φ0 − µ2

2
(z + 1)2∇2φ0 +

µ2

24
(z + 1)4∇2∇2φ0 + O(µ6) (2.16)

with an O(µ6) error.
We introduce a depth-averaged velocity potential, defined by

φ̄(x, y, t) =
1

1 + εζ

∫ εζ

−1

φ(x, y, z, t) dz = φ0 − µ2(1 + εζ)2

6
∇2φ0 + O(µ4) (2.17)

and thus

φ0(x, y, t) = φ̄(x, y, t) +
µ2H2

6
∇2φ̄(x, y, t) + O(µ4), (2.18)

where H = 1 + εζ.
Substituting (2.18) into (2.16), the three dimensional velocity potential describing
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the water wave motion in shallow water is expressed by the velocity potential which
is averaged along the vertical coordinate up to an error of O(µ6), or

φ(x, y, z, t) = φ̄+ µ2

(
H2

6
− (z + 1)2

2

)
∇2φ̄

−µ4

(
(z + 1)2

12
∇2(H2∇2φ̄)− (z + 1)4

24
∇2∇2φ̄

)
+ O(µ6). (2.19)

To account for the coupled nonlinear and dispersive effects for shallow water waves,
the dimensionless variable ε, representing nonlinearity, and µ, representing dispersion,
are assumed to be related as follows:

ε = O(µ2). (2.20)

The order of the time derivative and of transverse derivative of φ̄ and ζ are crucial
to the formulation of the problem. Many previous studies showed that the first-order
time derivative is of O(µ2), and the first-order transverse derivative of O(µ) (Katsis &
Akylas 1987) in a channel of finite width or O(µ1/2) (Mei 1986) in a narrow channel.
For the three-dimensional nonlinear long waves generated by a moving disturbance,
the evolution of upstream-running waves is transient and three-dimensional. It is
difficult to determine the characteristic transverse scale and the time scale explicitly
due to the variation of the wave as it develops. Meanwhile, the upstream wave
systems are supposed to exhibit different properties from those downstream wave
trains, whose counterpart is the Kelvin wake in classical linear theory. To explore
the physics of both the precursor waves and the downstream Kelvin-like waves, we
assume that the primary time variable is slow and such that

ε2 < O

(
∂

∂t

)
< 1.

Any combination of a time derivative of O(ε) or O(µ2) is omitted to leading order,
or

O

(
ε
∂

∂t

)
� O(ε), O

(
µ2 ∂

∂t

)
� O(µ2).

Following the above assumption, the substitution of (2.19) into the free-surface
condition (2.7) leads to

φ̄t + Fhφ̄x = −ζ +
µ2

3
Fh∇2φ̄x − ε

2
(φ̄2

x + φ̄2
y)− p, (2.21)

in which terms of order higher than O(ε, µ2) have been omitted.
Hence, (2.8) can be rewritten as

ζt + Fhζx = −∇ · ((1 + εζ)∇φ̄) + O(µ4). (2.22)

The above equation (2.22) is valid for any arbitrary ε. Equations (2.21) and (2.22)
are the expressions for the generalised Boussinesq (gB) equation (Wu 1981) in the
frame moving with a two-dimensional pressure patch on the free surface of shallow
water of uniform depth.

The free-surface elevation ζ can be expressed in terms of φ̄ explicitly according to
(2.21):

ζ = −φ̄t − Fhφ̄x +
µ2

3
Fh∇2φ̄x − ε

2
(φ̄2

x + φ̄2
y)− p. (2.23)
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Rewrite the nonlinear term ∇ · (εζ∇φ̄) in (2.22) by substituting (2.23) for the free-
surface elevation ζ and omit all terms of order higher than O(ε, µ2); we obtain a
new form of long-wave model in which all nonlinear terms are expressed by the
derivatives of φ̄ uniquely. Eventually, the so-called modified generalized Boussinesq
(mgB) equations are obtained by combining with (2.21):

φ̄t + Fhφ̄x = −ζ +
µ2

3
Fh∇2φ̄x − ε

2
(φ̄2

x + φ̄2
y)− p, (2.24)

ζt + Fhζx = −∇2φ̄+ εFh(2φ̄xφ̄xx + φ̄xφ̄yy + φ̄yφ̄xy) + ε∇ · (p∇φ̄). (2.25)

Compared with Wu’s gB equations (2.21), (2.22), the mgB equations omit some
terms of higher order. To O(ε, µ2), they are equivalent. However, the latter has some
advantages in the implementing of the numerical algorithm which will be described
in the following section.

The principal forcing term for the generation of nonlinear long waves due to
the applied pressure distribution is p on the right-hand side of (2.24). Since the
pressure distribution that we choose to employ is somewhat arbitrary, the last term
involving the pressure on the right-hand side of (2.25) is O(ε) and we omit it in the
computations.

2.2. Boundary conditions

On the ship hull, the fluid particles cannot penetrate the solid body surface. Therefore,
the normal component of the flow velocity is equal to the corresponding normal
velocity of the rigid hull:

∂φ(x, y, z, t)

∂n
= −Unx (x, y, z) ∈ SB, (2.26)

where SB is the submerged ship surface and n(x, y, z) is the normal vector at (x, y, z),
pointing out of the fluid domain.

Assume that the geometry of the ship hull is expressed in the form

y = Y (x, z) = BY
( x
L
,
z

d

)
= BY (X,Z),

where B, L, d are the half beam-width, half ship length and the draught of the ship
respectively. X, Y , Z are the dimensionless variables normalized by L, B, d respectively.

Following the same procedure of non-dimensionalization as in § 2.1, the non-
dimensional form of the boundary condition on the ship hull is

φy − 1

µ

B

d
YZφz =

1

ε

B

L
YX(Fh + εφx) at y = µ

B

h
Y (X,Z). (2.27)

From (2.16), it is easy to find that the vertical velocity component is a high-order
variable compared with the corresponding components in horizontal directions:

O(φz) = µO(φx, φy).

We assume that the ship geometry is thin and its characteristic parameters satisfy

B

L
= O(ε),

B

d
= O(µ),

B

h
= O(µ).

By expanding (2.27) about the symmetric plane y = 0, we can obtain its leading-
order term:

φy =
Fh

ε

B

L
YX at y = 0. (2.28)
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Thus the non-flux boundary condition on the ship hull is simplified into a Neumann
condition on y = 0, which is convenient for both theoretical analysis and numerical
calculation.

Taking the average with respect to the vertical variable z from −1 to the free
surface εζ for (2.28), we obtain

φ̄y =
Fh

ε

B

L

1

1 + εζ

∫ εζ

−1

YX dz =
Fh

2ε
Sx + O(ε), (2.29)

where Sx is the x-derivative of the non-dimensional cross-sectional area of the ship
hull under the still water line:

Sx =
2B

L

∫ 0

−1

YX dz. (2.30)

The present problem is treated as an initial boundary value problem. Waves
propagate away from the disturbance and are subject to the radiation condition that
they vanish at infinity:

φ→ 0, ζ → 0 as
√
x2 + y2 → +∞. (2.31)

In numerical calculations, the computational field is truncated at some distance
away from the disturbance in both the longitudinal and transverse directions. In
general, waves can reflect from the truncated boundaries and contaminate the flow
in the computational domain. Special care should be taken to implement suitable
open boundary conditions to make the waves pass through the boundaries without
reflection.

3. Numerical algorithm
3.1. Finite difference scheme

A number of finite difference schemes have been presented to solve the KdV or
KP equations. Several were proposed by Taha & Ablowitz (1984) for the numerical
solutions of the KdV equation. Wu & Wu (1982) employed the modified Euler
method to solve the two-dimensional generalized Boussinesq equations. For the three
dimensional case, Katsis & Akylas (1987) developed an explicit scheme for the
governing equation which results from integrating the KP equation once with respect
to x from negative infinity to x. The same method was also applied by Choi &
Mei (1989) to study a slender ship moving in restricted water. The drawback of the
explicit scheme is that the time step ∆t is of order ∆x3, in which ∆x is the spatial step,
which would result in rapid increase of computation time for the simulation with
refined spatial meshes. Chen & Sharma (1995) developed a more efficient numerical
technique using the fractional step algorithm with Crank–Nicolson-like schemes in
each half-step. In this paper, we develop an implicit finite difference algorithm to
solve the mgB equations (2.24) and (2.25).

The unknown φ̄ and ζ on the grid (i∆x, j∆y) in the computational domain at the
(n+ 1)th time level satisfy the governing equations (2.24) and (2.25). The discretized
finite difference equations can be written in the following form:

(φ̄t)
n+1
i,j + Fh(φ̄x)

n+1
i,j − µ2Fh

3
(φ̄xxx)

n+1
i,j = −ζn+1

i,j +
µ2Fh

3
(φ̄xyy)

n+1
i,j − ε

2
(φ̄2

x + φ̄2
y)
n+1
i,j − pi,j ,

(3.1)

(ζt)
n+1
i,j + Fh(ζx)

n+1
i,j = −(φ̄xx + φ̄yy)

n+1
i,j + εFh(2φ̄xφ̄xx + φ̄xφ̄yy + φ̄yφ̄xy)

n+1
i,j . (3.2)
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The adopted finite difference scheme (3.1), (3.2) is of fully implicit type and is
unconditionally stable. Note that the O(ε) forcing term in (2.25) has been omitted.

The three-time-level scheme is used to approximate the time derivative:

(φ̄t)
n+1
i,j =

3φ̄n+1
i,j − 4φ̄ni,j + φ̄n−1

i,j

2∆t
,

(ζt)
n+1
i,j =

3ζn+1
i,j − 4ζni,j + ζn−1

i,j

2∆t
.

A centred scheme is applied to approximate all spatial derivatives at the inner
nodes of the computational mesh. The solution of the nonlinear equations (3.1) and
(3.2) can be obtained iteratively. The initial value of the variables at the next time
step is taken as the value at the nth step,

φ̄
n+1,0
i,j = φ̄ni,j , ζ

n+1,0
i,j = ζni,j ,

in which the second superscript indicates the index of iteration. At each iterative step,
the linear terms with the x-derivative are approximated implicitly on the left-hand
side of equations and all other terms with nonlinearity and cross-derivatives are put
on the right-hand side as the known for the next iteration. The iteration is done line
by line on the nodes with the same transverse superscript j, from the symmetric plane
(j = 0) to the truncated outer boundary (j = jmax). All variables take the latest value
from the iteration. A sub-relaxation scheme is used to update the variables after each
iteration.

At each iterative step k,

3ζ̃n+1,k
i,j − 4ζni,j + ζn−1

i,j

2∆t
+ Fh

ζ̃
n+1,k
i+1,j − ζ̃n+1,k

i−1,j

2∆x

= −(φ̄xx + φ̄yy)
n+1,k′
i,j + εFh(2φ̄xφ̄xx + φ̄xφ̄yy + φ̄yφ̄xy)

n+1,k′
i,j (3.3)

3 ˜̄φ
n+1,k

i,j − 4φ̄ni,j + φ̄n−1
i,j

2∆t
+ Fh

˜̄φn+1,k
i+1,j − ˜̄φn+1,k

i−1,j

2∆x
− µ2Fh

3

˜̄φn+1,k
i+2,j − 2 ˜̄φn+1,k

i+1,j + 2 ˜̄φn+1,k
i−1,j − ˜̄φn+1,k

i−2,j

2∆x3

= −ζ̃n+1,k
i,j +

µ2Fh

3
(φ̄xyy)

n+1,k′
i,j − ε

2
(φ̄2

x + φ̄2
y)
n+1,k′
i,j − pi,j , (3.4)

in which ζ̃
n+1,k
i,j and ˜̄φn+1,k

i,j are the prediction values of the ζi,j and φ̄i,j after the kth
iteration. The superscript k′ is used in the terms of the right-hand side since both the
values at the (k − 1)th and kth iterations are used to evaluate the derivatives.

The x-derivatives on the right-hand sides of (3.3) and (3.4) are obtained from the
kth iterative value

(φ̄x)
n+1,k′
i,j =

φ̄
n+1,k

i+1 − φ̄n+1,k

i−1

2∆x
, (φ̄xx)

n+1,k′
i,j =

φ̄
n+1,k

i+1,j − 2φ̄
n+1,k

i,j + φ̄
n+1,k

i−1,j

∆x2
.

The transverse derivatives are evaluated from

(fy)
n+1,k′
i,j =

f
n+1,k−1
i,j+1 − fn+1,k

i,j−1

2∆y
, (fyy)

n+1,k′
i,j =

f
n+1,k−1
i,j+1 − 2fn+1,k−1

i,j + f
n+1,k
i,j−1

∆y2
,

in which f denotes the velocity potential φ̄ or its first x-derivative φ̄x.
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The kth iterative values of φ̄ and ζ are obtained from

φ̄
n+1,k
i,j = φ̄ni,j + ωφ( ˜̄φ

n+1,k

i,j − φ̄ni,j), ζ
n+1,k
i,j = ζni,j + ωζ(ζ̃

n+1,k
i,j − ζni,j),

in which ωφ and ωζ are the relaxative factors for φ̄ and ζ respectively. The relaxation
factor is related to the eigenvalue of the set of linear equations. A rigorous analysis of
the eigenvalue of the discretized set of linear equations is almost impossible because of
the complexity of the system. According to numerical experience, the under-relaxative
factors ωφ and ωζ take values in the range of (0.2, 1.0), and are functions of the spatial
grid size and time step. Fine computational grids and a small time step need smaller
relaxative factors than a numerical test with coarser grids. From the numerical tests, it
is found that there exist critical relaxative factors, beyond which the iteration cannot
converge and below which the number of iterations needed to reach convergence
increases as the relaxative factors decrease. These optimal relaxative factors ωφ,opt and
ωζ,opt can be obtained by running the computer code for a few time steps and one
can select the best values for the simulation of the free-surface flow for long time.

The implicit scheme is unconditionally stable, and its temporal and spatial accuracy
is second order, i.e. O(∆t2), O(∆x2,∆y2).

3.2. Open boundary conditions

The no-disturbance boundary conditions upstream are set as

φ̄ = 0, ζ = 0 as x→ −∞.
The computation will stop before the upstream-going waves hit the boundary.

The speed of the wave propagation downstream is much higher than that of the
wave propagating upstream. Thus it is not appropriate to extend the downstream
domain far enough downstream to satisfy the no-disturbance boundary condition.
Suitable open boundary conditions are needed to act on the truncated boundaries
and make the wave propagate outward with minimum reflection. It was shown that
the reflective effect of sidewalls is the origin of the two-dimensional straight-crest
upstream solitons in the channels of finite depth (see Katsis & Akylas 1987; Pedersen
1988). Therefore, the open boundary condition is crucial in order to capture the
phenomenon of three-dimensional upstream solitons in open water. A Sommerfeld-
type radiation condition is imposed on both the downstream boundary and transverse
truncated boundary:

∂φ̄

∂t
+ Cφ

∂φ̄

∂x
= 0,

∂ζ

∂t
+ Cζ

∂ζ

∂y
= 0,

in which Cφ, Cζ are the phase velocities of the velocity potential and free-surface
elevation respectively, which can be computed with Orlanski’s scheme (Orlanski 1976);
n is the normal unit vector on the truncated boundaries.

3.3. Data smoothing

With the progress of the calculation, error accumulation is unavoidable in the com-
putational domain. The noise consists of waves with short wavelength and its ampli-
fication will grow and eventually contaminate the computational domain. A spatial
filter is applied to smooth the free-surface profile (see Longuet-Higgins & Cokelet
1976; Nakos, Kring & Sclavounos 1993) each 40–100 time steps. Both five-point and
seven-point schemes are tested and they generate almost same solution of φ̄ and ζ.
In this paper, the five-point smoothing scheme was used.
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4. Numerical results and discussion
The mathematical model and numerical schemes described in § 2 and § 3 are applied

to simulate the nonlinear long waves induced by a pressure distribution and a thin
ship travelling near the critical speed in shallow water. In the three-dimensional case,
the wavenumber k and wave amplitude a are difficult to define uniquely, though this
causes no problems in the derivation of the governing equations and the design of
numerical schemes. In the following numerical computation, the water depth h is
chosen to scale all the spatial variables and the time scale becomes

√
h/g.

4.1. Nonlinear waves generated by a pressure distribution

We consider the case of nonlinear long waves generated by a pressure distribution
of sinusoidal shape moving on the free surface. The pressure acts inside a rectangle
symmetric about the x- and y-axes with length L and width B and vanishes outside
the rectangle. The pressure distribution is defined as

p(x, y) = P cos2
(πx
L

)
cos2

(πy
B

)
, −L

2
< x <

L

2
, −B

2
< y <

B

2
,

in which P is the peak value of the pressure distribution. Due to symmetry, the
computation is only carried out in the positive half of the fluid domain with y > 0.
The computational mesh is orthogonal and the longitudinal and transverse grid
sizes are ∆x = ∆y = 0.25, respectively. The time step is ∆t = 0.2. We choose the
non-dimensional size of the pressure rectangle as L = 10.0 and B = 4.0. The pres-
sure is assumed to be forced impulsively at the initial time when the velocity and
free-surface elevation are both zero. The computational domain is xupstream = −60.0,
xdownstream = 100.0 and the transverse boundary is truncated at yspan = 240.0. Oranski
open boundary conditions are applied on the downstream boundary and the transverse
boundary so that the outgoing wave propagates outside the computational domain
with very little reflection. In addition to the standard resolution ∆x = ∆y = 0.25 and
∆t = 0.2, computations have also been made for ∆x,∆y = 0.10, 0.25, 0.40, ∆t = 0.05,
0.1, 0.2. It is found that the wave elevation, especially of the upstream nonlinear long
waves, converges for the grid sizes 0.25 and time step 0.2. In fact, the values of grid
size and time step would become much smaller if we employed the wavelength of
upstream waves as the spatial scale; unfortunately it cannot be determined a priori.

Figure 1 presents perspective views of the wave patterns generated by a pressure
distribution travelling at a critical speed with magnitude P = 0.30 at different stages
of the development of the waves. There is no reflection from the side boundary and
the crestlines of the upstream waves are always curved, with the curvature decreasing
as the wave moves forward. At t = 1200, four upstream solitary waves have been
radiated from the disturbance and a new one is developing. The wave peak occurs
ahead of the front edge of the pressure distribution and a nearly steady wave hump
originates there and extends downstream obliquely, behaving like a barrier between
the upstream solitary wave region and the downstream divergent wave region. The
wave reaches its minimum beneath the pressure distribution. Both transverse and
divergent wave systems develop behind the disturbance and the interaction between
these two wave systems is clear. The transverse wave packet has a mean downstream
group velocity and a depressed water surface, analogous to that in the two-dimensional
case, forms behind the trailing edge of the pressure patch (see Mei 1986).

Figure 2 shows the wave profiles on the symmetry plane y = 0 induced by pressure
distributions with different magnitudes P = 0.20, 0.30, 0.40, 0.50. It is clear that a
succession of solitary waves radiate upstream, the wave amplitude decreasing as it
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Figure 1. Wave evolution generated by a pressure distribution in an unbounded domain.
Fh = 1.0, P = 0.30: (a) t = 200; (b) t = 400; (c) t = 800; (d ) t = 1200.

moves forward. The mean level behind the pressure distribution is lower than the
still free surface and connects to a transverse wave train propagating downstream.
There exists significant interaction, including the transfer of mass, momentum and
energy, between neighbouring solitons. This can be proved by the study of free soliton,
see below, which shows a different type of wave development without forcing. The
magnitude of the pressure plays an important role in the wave amplitude, phase
velocity and the period of soliton generation. With a higher forcing pressure, the
wave amplitudes and velocities of both upstream and downstream waves increase.

We define the maximum value of the three-dimensional solitary wave on the
symmetry plane as its amplitude and show the correlation between the wave amplitude
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Figure 2. Wave profile at y = 0 generated by a pressure distribution, Fh = 1.0: (a) P = 0.20;
(b) P = 0.30; (c) P = 0.50.

and crest position in figure 3. For different pressures, the relation between the soliton
crest position xc and the product of its amplitude and time Act is linear and can be
approximated by the formula

xc + 2
3
Act = C(P ) (4.1)

in which C(P ) is a constant varying with the pressure distribution.
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Figure 3. xc vs. Act for the leading soliton generated by a pressure distribution, Fh = 1.0.

P = 0.20
P = 0.30
P = 0.40
P = 0.50

0.20

0 200 400 600 1400
t

Ac

0.16

0.12

0.08

0.04

800 1000 1200

Ac = 0.5350 (t–53.86)–0.3407

Ac = 0.5981 (t–43.07)–0.3303

Ac = 0.6968 (t–36.36)–0.3345

Ac = 0.7696 (t–30.87)–0.3346

Figure 4. Wave amplitude Ac of the leading soliton at different times, Fh = 1.0.
The lines are fitting curves.

The amplitudes of the leading solitons at different times are drawn in figure 4 and
are approximated by the formula

Ac(t) = A1(t− t0)γ (4.2)

in which A1 and t0 are constants related to the initial wave amplitude and the escape
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P A1 t0 γ

0.20 0.5350 53.86 −0.3407
0.30 0.5981 43.07 −0.3303
0.40 0.6968 36.36 −0.3345
0.50 0.7696 30.87 −0.3346

Table 1. Approximation for the wave amplitude of the leading soliton generated by a pressure
distribution, Fh = 1.0.
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Figure 5. Crestline of the leading soliton generated by a pressure distribution from t = 200 to
t = 1000 with interval 80. Fh = 1.0: (a) P = 0.20; (b) P = 0.50.

time of the soliton from the pressure disturbance; γ is the decay rate of the leading
soliton. Table 1 shows the result of the approximation and shows that the wave
amplitude of the leading soliton decays asymptotically at a rate of O(t−1/3) for large t.

Figure 5 shows the evolution of the crestline of the leading soliton generated
by pressure distributions of different magnitudes. The first crestline is recorded at
t = 200, in which the soliton has detached from the forcing, and the time interval
between the crestlines is ∆t = 80. As shown, the curvature of the isophasal crestline
decreases as the soliton moves ahead. The crestlines are drawn on a log-log scale in
figure 6(a). Surprisingly, a straight line is predicted with almost the same slope at
different times. The crestline of the leading soliton is approximated by the formula

y = α1(t)(x− xc)β(t). (4.3)

The approximation indices β(t) at different times are plotted in figure 6(b); β(t) takes
a mean value close to 0.5 and varies very slowly with respect to time, independently of
the forcing pressure magnitude and the wave amplitude. This shows that the crestline
is nearly a parabola that can be approximated by

y2 = α(t)(x− xc) (4.4)
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Figure 6. Geometry properties of the crestline of the leading soliton, Fh = 1.0: (a) log-log scale
plot of crestline for P = 0.30; (b) index β(t); (c) latus rectum α(t). The lines in (a) are fitting curves.
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Figure 7. Wave amplitude along the crestline of the leading soliton generated by a pressure
distribution from t = 200 to t = 1000 with interval 80. Fh = 1.0: (a) P = 0.20; (b) P = 0.50.

in which α(t) is the length of the latus rectum (the chord perpendicular to the symmetry
axis which passes through the focus of a parabola). Its dependence on time is shown
in figure 6(c) and a linear correlation is found. The slope of α(t) is about 1.40 and
independent of the magnitude of the forcing pressure.

Based on the analysis shown above, we can see that, when time is large enough,
the crestline of the leading soliton forced in open sea takes the asymptotic form

x+ A0t
2/3 = B0

y2

t
(4.5)

in which A0 and B0 are constants determined by the initial value of the waves.
The wave amplitude along the crestline of the leading wave is shown in figure 7

with the time interval ∆t = 80. The wave is steeper at its wave front in the y-direction,
which is a consequence of the impulsive start of the forcing pressure. As time goes on,
the wave spreads in the lateral direction. The slope of the crestline decreases slowly
when the soliton moves forward.

The three-dimensional upstream solitary waves can also be generated in the sub-
critical and supercritical cases. Figure 8(a, c) shows the perspective and contour
plots of the wave patterns at Fh = 0.9 and 1.1. The wave profiles on the sym-
metry plane are drawn in figure 9. At Fh = 0.9, the leading soliton is followed
by a succession of solitons with decreasing wave amplitude. The positive peak of
the wave is reached at the trailing edge of the pressure patch and the downstream
wake is much more significant than the upstream waves. The wave amplitude and
phase velocity of the solitons increase as the Froude number increases, whereas
the amplitude of the downstream waves decreases. As shown in figure 9, there is
no depressed water behind the disturbance at Fh = 0.9. However, the mean water
level of the central line of the downstream region is below z = 0 at Fh = 1.1. A
very interesting property which exists exclusively in three dimensions is that the
upstream soliton is blocked for the supercritical case. The phase velocity of the
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Figure 8 (a, b). For caption see facing page.
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Figure 8. Wave patterns and contours at transcritical speeds. P = 0.30: (a) Fh = 0.9, t = 400;
(b) Fh = 1.0, t = 1200; (c) Fh = 1.1, t = 1200.

leading soliton tends to that of the disturbance Fh as its amplitude decreases to a
critical value, which is 0.23 seen in figure 9(b). The leading soliton shifts a little
from t = 1600 to t = 2000 with almost no change of the amplitude. During this
time, the curvature of the leading soliton decreases slowly to form a more straight
crestline.

The free propagation of three-dimensional nonlinear long waves is also investigated.
Instead of letting a steady pressure act on the free surface for all time t > 0, we turn
off the pressure distribution at some time, in this case at t = 200, when the first crest
has been generated and the second has not yet escaped from the source. The free-
surface elevation and velocity at t = 200 become the initial value for the nonlinear
wave evolution without forcing.

Figure 10 shows the wave profile on the symmetry plane without forcing by
the finite-time action of the pressure of magnitude P = 0.40 and 0.60. The large
free-surface elevation around the pressure distribution is smoothed rapidly. The lead-
ing soliton detaches from the second soliton and the mean water level between
two successive waves becomes zero. The wave amplitude of the second soliton
is smaller than the leading one. The interaction between the leading soliton and
its successor is negligible and it can be considered as a free soliton in three
dimensions.

The relation between the crest displacement xc and the product Act is shown in
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Figure 9. Wave profile at y = 0 generated by a pressure distribution, P = 0.30: (a) Fh = 0.9;
(b) Fh = 1.1.

figure 11. The slope of Act as a function of −xc decreases from 3/2, which is illustrated
in figure 3, to nearly 1/3. The slope of the free soliton is independent of the initial
values which are different for the wave pattern generated by a pressure with different
magnitude.

The wave amplitude of the leading free soliton at different times is displayed in
figure 12 for P = 0.30, 0.40, 0.50, 0.60. The regressive results for the variables in (4.2)
are listed in table 2. The decay rate of the free soliton amplitude with respect to time
is about −0.785.

The decay rate of a free three-dimensional soliton is larger than a forced one
which interacts with the next soliton. In two dimensions, a free soliton can keep its
shape and propagate permanently. By the conservation of energy, Lee & Grimshaw
(1990) deduced that the amplitude of a free propagating soliton decays at a rate of
O(t−2/3) by assuming that the amplitude along the isophasal crestline is constant.
From the computation, we found that the wave amplitude of the leading soliton
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Figure 10. Wave profile at y = 0 of a free three-dimensional soliton, Fh = 1.0: (a) P = 0.30;
(b) P = 0.60.

P A1 t0 γ

0.30 7.79 85.06 −0.7850
0.40 9.65 62.17 −0.7863
0.50 11.16 57.91 −0.7861
0.60 12.36 38.20 −0.7830

Table 2. Approximation for the wave amplitude of the free leading soliton, Fh = 1.0.

spreads laterally. It is found that the crestline of the leading free soliton is still nearly
a parabola by fitting the crestline by (4.3) and obtaining the index β(t) close to 0.50.
The latus rectum of its parabolic crestline is a linear function of time with steeper
slope 1.60 compared with the solitons generated by a constant applied pressure
forcing.
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Figure 11. xc vs. Act of the free leading three-dimensional soliton, Fh = 1.0.

4.2. Nonlinear waves generated by a thin ship

For simplicity, we use a strut which extends to the sea bed and has the same width
throughout the depth to simulate a high-speed vessel with more complicated hull
shape. The shape of the water line is defined as

b(x) =
B

2
cos2 πx

L
, −L

2
6 x 6

L

2
,

in which B and L are the beam width and length of the ship. An advantage of this
choice is that there is no jump of the normal vector along the waterline near the bow
and stern. We consider a strut of length L = 10.16. Different beam widths are used
to vary the slenderness of the strut. The computational domain is chosen as

−80 < x < 100, 0 < y < 240.

The grid size is taken as ∆x = 0.25 and ∆y = 0.4. The time step is ∆t = 0.15.
Figure 13 shows the perspective views of the wave pattern at t = 800 generated

by struts of slenderness B/L = 0.05, 0.10, 0.15, 0.20 travelling at the critical speed
Fh = 1.0. As shown, three dimensional solitary waves radiate in front of the strut
periodically. The amplitude of the three-dimensional soliton decays as it moves
upstream. The wave amplitude and frequency of wave generation increase as the
strut becomes less slender. Shorter waves are generated in the downstream area as
B/L increases, though the geometry of the upstream solitons does not change much.
A transverse wave system is formed in a wedge-like region behind the strut and
a system of divergent wave trains is formed outside the wedge. The performance
of the Oranski open boundary condition becomes a little worse when the incident
wave height increases as the strut becomes fat. Small reflective waves can be seen
to interact with the upstream solitons and generate small fluctuations along the
crests.
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Figure 12. Wave amplitude Ac of the free leading three-dimensional soliton, Fh = 1.0. The lines
are fitting curves.
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Figure 13. Wave pattern generated by a strut in open sea. Fh = 1.0, t = 800: (a) B/L = 0.05;
(b) B/L = 0.20.
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Figure 14. Wave profile at y = 0 generated by a strut, Fh = 1.0: (a) B/L = 0.05; (b) B/L = 0.20.

The free-surface elevations on the symmetry plane y = 0 generated by struts with
different beam–length ratios travelling at a critical speed are drawn in figure 14. The
peak value of the free-surface elevation occurs at about x = −4.0, a small distance
behind the bow, a phenomenon observed in steady ship bow waves. The maximum
negative wave elevation occurs near x = 4.0, a little ahead of the stern. The mean
water level at y = 0 in the downstream region is below the still sea level and
the depressed region elongates with time. As B/L increases, the downstream waves
become pronounced and their wave heights increase. Comparing with figure 2, the
downstream wave systems generated by a pressure distribution are more smooth than
those by the strut. The ratio between the maximum negative wave elevation and the
maximum positive wave elevation is smaller for the waves of the strut than those of
the pressure distribution.

By fitting the leading wave amplitude with time by (4.2), we also find that the
index γ is close to −1/3. The fitting results are listed in table 3 for struts with
different beam–length ratios. The dependence of the phase velocity of the leading
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B/L A1 t0 γ

0.05 0.5900 41.10 −0.3379
0.10 0.7792 32.95 −0.3323
0.15 0.9659 27.28 −0.3356
0.20 1.1265 21.48 −0.3373

Table 3. Approximation for the wave amplitude of the leading soliton generated by a strut,
Fh = 1.0.
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Figure 15. xc vs. Act of the leading soliton generated by a strut, Fh = 1.0.

soliton generated by the ship on its amplitude can be found from figure 15. A linear
relation exists between xc and Act with a slope approximately of 3/2. The slope is
independent of the slenderness of the strut. From table 3, the parameter t0, which is
the starting instant of soliton-like crest, is of O(10). Compared with the time scale of
the nonlinear wave evolution t∼O(103), t0 is very small. Therefore, the phase velocity
can be approximated as

Vc = −2

3

d

dt
(tAc(t)) ≈ − 2

3
(1 + γ)Ac = 4

9
Ac,

which is applicable for the forced wave generated by a pressure distribution, source
or underwater topography travelling at the critical speed.

Analysis of the geometry of the crestline of the leading soliton shows that the
crestline is almost a perfect parabola whose curvature decreases with time. Using
(4.4), we find that the slope of α(t) is about 1.40 and independent of the geometry of
the strut.

Figure 16 shows the wave profile at the symmetry plane generated by a strut of
B/L = 0.10 at speed Fh = 0.9 and 1.1. At subcritical speed Fh = 0.9, the precursor
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Figure 16. Wave profile at y = 0 generated by a strut, B/L = 0.10: (a) Fh = 0.9; (b) Fh = 1.1.

solitary wave decrease in amplitude as it moves upstream. At the supercritical speed
Fh = 1.1, the leading soliton slows when its amplitude tends to 0.22, which is nearly
F2
h − 1, the critical wave amplitude in a restricted channel for supercritical solitons.

The leading soliton will eventually move at the same speed as the strut. The mean
sea level of the downstream wave profile at y = 0 is below the still free surface. Both
the upstream and downstream profile at the symmetry plane tends to be steady.

5. Conclusions
A modified generalized Boussinesq equation is derived to formulate the nonlinear

long waves generated by a disturbance, which could be a pressure distribution,
ship or underwater topography, travelling at transcritical speeds in shallow water in
a restricted channel or open sea. The balance between nonlinearity and dispersive
effects for the long wave causes the generation of solitary waves propagating upstream
ahead of the disturbance. An effective implicit finite difference method is applied to
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solve the nonlinear wave problem numerically. At each time step, an under-relaxation
iterative procedure is used. A thin-ship approximation is used to study the solitons
generated by a high-speed vessel in shallow water.

In the horizontally unbounded domain, three-dimensional solitary waves are gen-
erated ahead of the disturbance of a pressure distribution or an advancing ship. The
crestline of the leading soliton is approximately a parabola with its latus rectum pro-
portional to time, making the crestline curvature decrease as it moves forward. The
decay rate of the wave amplitude is found to be O(t−1/3) for the forced leading soliton
and O(t−0.78) for the free propagating three-dimensional solitary wave. Moreover, in
the supercritical case the upstream soliton does not detach from the disturbance as is
found to be the case in the critical and subcritical case. In the supercritical case, the
steady state can be reached with several soliton parabolic humps formed in front of
the disturbance and the wave amplitude of the leading soliton tends to (F2

h − 1)h.
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